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Abstract

This essay is based on the 3rd and 4th chapters of the book ”Prime
Numbers a Computational Perspective” by Richard Crandall and Carl
Pomerance [2]. Unless stated otherwise, definitions, theorems and
proofs of theorems in sections 2 to 6 are based on results described
in these chapters.
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1 Introduction

Prime numbers are a very important area of mathematics. In cryptography,
prime numbers are used to secure bank transactions as well as RSA encryp-
tions by multiplying two very large prime numbers together. Examples like
this show that being able to determine whether a number is prime or not is
extremely useful. In this essay I will consider some methods for identifying
possible prime numbers and later ways to show that a number is prime.

Our first task is to check whether there is a finite number of prime
numbers.

Lemma 1.1. there are infinitely many prime numbers.

Proof. Assume we have N prime numbers. Consider

S =
N∏
i=1

Pi + 1 : P is prime

We now note that for each i ∈ [1, N ], Pi does not divide S. We can therefore
conclude that S is prime.

Given there will be no largest prime number, we now consider various
tools to identify primes

2 Some useful results

In our analysis of prime number testing we will encounter several algorithms.
With these algorithms, the main downside to them will be the time required
to complete them. Thus when we give an overview of the advantages and
disadvantages of these, we will need to consider the length of time it would
take a computer to implement them.

Definition 2.1 (Big-O notation). If we have a fixed C > 0 and two funtions
f and g such that

|f(x| ≤ C |g(x))|

for every x ∈ N then f is called the big-O of g

Definition 2.2. The Prime counting function, denoted π(x), is defined as
the number of prime numbers less than or equal to x.

From this, we obtain a very simple result

Corollary. It is possible to describe π(x) = O(x).

Proof. This follows from the fact that the number of primes less than or
equal to x is bounded above by x.
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Definition 2.3 (little-o notation). Suppose that f(x) and g(x) are functions
and

limx→∞f(x)/g(x) = 0

. Then we have that f(x) = o(g(x))

In order to consider the sieve of Eratosthenes, we need to put an approx-
imation to how many primes we can expect to be less than or equal to N
where N becomes large.

Definition 2.4. A function f is asymptotic to g if

lim
x→∞

f(x)

g(x)
= 1

. We denote this by f(x) ∼ g(x)

Theorem 2.1 (Prime Number Theorem). The prime counting function π(x)
is asymptotic to x

log(x) . In other terms, for large values to x, π(x) ≈ x
log(x) .

The proof of this theorem requires the knowledge that ζ(s) has no zeros with ℜ(s) =
1 where ζ(s) is the Riemann Zeta function, and R(s) is the real part of the
complex plane, as explained in “Newman’s short proof of the prime number
theorem”, found in [6]. As a result, a full proof of this result will not be given
here, but will help us estimate the efficiency of the Sieve of Eratosthenes.

3 Sieve of Eratosthenes

The simplest test for primality testing is an algorithm known as the Sieve of
Eratosthenes. This is an algorithm which takes an array of N − 1 numbers
and begins with a 1 representing each of the numbers, usually beginning
with 2 and ending with N . We describe the most basic algorithm below.

Algorithm 3.1 (Sieve of Eratosthenes). Step 1: consider the first number
which is given a 1 in the array and label it p. Step 2: Go to the entry
p2 and change its label to a 0 if it isn’t already. (This minor improvement
is suggested in the article “The Genuine Sieve of Eratosthenes” [4]. Step
3: From p2, pass over all other multiples of p and label them 0. If the
value of the multiple exceeds N , move to step 4. Step 4: Consider the
smallest remaining value n which is assigned a 1. If n2 > N , the algorithm
terminates. Otherwise, return to Step 1

Remark. The Sieve of Eratosthenes can also be adapted to have an arbitrary
starting point L. For an interval (L,R) with L and R even, find a value B
which divides R−L. We also require that L > ⌈

√
R⌉ . Denote L > ⌈

√
R⌉ =

P and assume it possible to ”make a table of of the π(P ) primes pk ≤ P”.[2,
p. 122] Begin at the first entry and let qk = (−1

2(L+1+ pk)) mod pk. Then
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for each j ∈ [0, B − 1], where k ∈ [2, π(P )], if j < B, then, starting with
j = qk, set j = j + pk and bj = 0. Reset qk = (qk − B) mod pk and repeat
the algorithm

We now present 2 examples of how the Sieve of Eratosthenes would work
in practice.

Example 3.1. We perform the Sieve of Eratosthenes on the array of num-
bers less than or equal to 101.

Initialising the array: we begin by giving a 10 × 10 matrix with each
entry being 1

A0 =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


which represents the values in

A =


2 3 · · · 11
12 13 · · · 21
...

...
. . .

...
92 93 · · · 101


The first value in this matrix represents 2, so within our matrix An (here n
represents the number of iterations of the Sieve that have been completed),
we continue to represent 2 with a 1 and declare it prime. Starting with
22 = 4, we change the value to a 0. thus we have

A1 =



1 1 0 1 0 · · · 1
0 1 0 1 0 · · · 1
0 1 0 1 0 · · · 1
0 1 0 1 0 · · · 1
...

...
...

...
...

. . .
...

0 1 0 1 0 · · · 1


Now the first remaining 1 that has not been used represents 3, so beginning
with the 9 value, all multiples of 3 are changed to 0, thus

A2 =



1 1 0 1 0 1 0 0 0 1
0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1 0 1
0 0 0 1 0 1 0 0 0 1
0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1 0 1
0 0 0 1 0 1 0 0 0 1
0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1 0 1
0 0 0 1 0 1 0 0 0 1
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By the end of 4th iteration our matrix becomes

A4 =



1 1 0 1 0 1 0 0 0 1
0 1 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1


We now see that the next 1 value is 11 which is greater than

√
101, so we

can terminate the algorithm and declare that our primes between 2 and 101
are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97 and 101, as suggested by our final array.

3.1 Disadvantages of the Sieve of Eratosthenes

The Sieve of Eratosthenes is a very accurate way of determining the primal-
ity of a number. If the final output of the Sieve of Eratosthenes gives a 1,
the value in question is definitely prime. The drawback is that the algorithm
is so slow that where N becomes large, the length of the array becomes so
large that it will take more than a computer’s lifetime to execute. The usual
implementation of the Sieve of Eratosthenes requires

π(
√
N)∑

i=1

N

pi
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considerations, which we will approximate by the prime number theorem.
Based on the work in Melissa O’Neill’s article [4] we have that

π(
√
N)∑

i=1

N

pi
≈

2
√
N

log(N)∑
i=1

N

pi

≈ N

2
+N

π(
√
N)∑

i=2

N

pi

≈ N

2
+N

2
√
N

log(N)∑
i=1

1

i log(i)

≈ N

2
+N

∫ 2
√
N

log(N)

2

1

i log(i)
di

≈ N

2
+N

∫ log( 2
√
N

log(N)
)

log(2)
u−1du

≈ N log(log(N)) +O(N)

Where we have approximated π(
√
N) using the prime number theorem

in both the upper limit and the sum, and we have used the substitution
u = log(i) for the integral. The first issue with implementing the Sieve of
Eratosthenes is the amount of computer space it occupies. As the number
of values to be tested increases, the size of the full array of numbers to use
becomes too large. An obvious idea for a solution would be to reduce the
size of this array and still check for prime numbers in this range. However,
the consequence of this is that the time for the Sieve to complete begins to
get large. For an array of length M with primes up to

√
N the time the

sieve takes is proportional to

M log(log(N)) + π(
√
N) +O(N)

, of which the term π(
√
N will increase extremely quickly. We thus need a

more efficient method to determine prime numbers. However, it will turn
out that these are not entirely accurate, so they will work alongside the
Sieve of Eratosthenes.

4 Fermat pseudoprimes and Carmichael numbers

4.1 Fermat’s Little Theorem

Before we introduce Fermat’s little theorem, we will use the binomial the-
orem to introduce a lemma. The proof shown is very standard and can
be found in many places, one of which is in the third chapter of Robert E
Bishop’s article “on Fermat’s Little Theorem” [1]
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Lemma 4.1. For integers a and b and a prime number p, we have that

(a+ b)p ≡ ap + bp mod p

Proof. We will use the formula for binomial coefficients to show that each of
these will divide p. By the binomial theorem, we have that the kth coefficient
of (a+ b)p is given by (

p
k

)
=

p!

k!(p− k)!

. Now for any 0 < k < p, neither k! nor (p − k)! will be divisible by p as
they contain values strictly less than p and p cannot be factorised. Given p!

is divisible by p, we know that

(
p
k

)
is divisible by p.

Theorem 4.2 (Fermat’s Little Theorem). Suppose p is a prime number.
Then for any integer base a, we have that

ap ≡ a mod p

Proof. We will prove the result by (weak) induction on a. If a = 1, the
result is trivial given that 1n = 1 for any value of n. Now suppose for our
induction hypothesis that

ap−1 ≡ 1 mod p

or, equivalently
ap ≡ a mod p

(as long as a and p are coprime) which has been obtained by multiplying
through by a. Now using the above lemma,

(a+ 1)p ≡ ap + 1p mod p

. As ap ≡ a mod p by assumption, (a + 1)≡a + 1 mod p, so we conclude
our proof by induction.

Fermat’s Little Theorem would give an extremely powerful test to see
whether a number is prime if the converse was also true. It seems that if,
for any base (we may want to check this by induction), our output mod p
is the base, then p is prime. However, it turns out that the converse to
Fermat’s Little Theorem is not true. We will see some examples below of
numbers which satisfy the conditions for Fermat’s Little Theorem but are
not prime.
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4.2 Fermat pseudoprimes

We will begin this section with a definition.

Definition 4.1. A Fermat pseudoprime base a is a value n satisfying an ≡ a
mod n but is not a prime value.

We now present an example of a Fermat pseudoprime, before looking at
two useful results.

Example 4.1. we have 390 mod 91 ≡ (36)15 mod 91. Now 36 = 729 is
one more than 728 = 91× 8, so 36 ≡ 1 mod 91, thus,391 ≡ 3 mod 91 so 91
is a pseudoprime base 3 (along with any other composite number 1 greater
than a multiple of 6).

There is, however, hope that as our values of n increase, the likelihood
of n satisfying Fermat’s Little Theorem will be a pseudoprime is going to
reduce. This turns out to be the case.

Theorem 4.3. For each fixed integer a ≥ 2, the number of pseudoprimes
less than or equal to x is o(π(x)). Specifically,

f(x) < xe−
1
3
log(x)

1
4

.

Proof. We will outline the proof from Paul Erdos’ article “On Almost Primes”
[3]. Let g(n) be the least positive exponent satisfying 2g(n) mod n. We
split our values of g into 2 cases. For our first case, consider when g ≤
e(log(x))

.5 = H. Consider P =
∏H

r=1(2
r − 1). Given that for each g(n), 2g(n)

divides n, they are factors of P . The next step is to split this class of values
into two subclasses, Γ1 and Γ2. First, consider those which have less than
W = 1

10 log(x)
0.5 distinct prime factors. Using the fact that there will be a

value m ≤ x in this class with 2α dividing m, we can state that Γ1 has less
than WkW ( log(x)log(2) )

W elements, where k is the number of prime factors of P .

For x sufficiently large, this is less than x
1
4 . For Γ2, let d(m) be the number

of divisors of m and v(m) be the number of distinct prime factors of m.

This result is useful because it means the probability that a large number
that satisfies Fermat’s Little Theorem is prime will tend to 1 as n becomes
large. There are, however, two potential issues. Firstly, it turns out that as
well as having infinitely many primes, there are also infinitely many Fermat
pseudoprimes for each base. It is interesting to note that this fact is a direct
consequence of the infinity of prime numbers

Theorem 4.4. For each base a, there are infinitely many Fermat pseudo-
primes.
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Proof. Let p > 2 be a prime number, and a a base such that p ∤ a2 − 1.
Consider

n =
a2p − 1

a2 − 1

. By the difference of two squares formula, we can write n as

(ap − 1)(ap + 1)

(a− 1)(a+ 1)
=

ap − 1

a− 1

ap + 1

a+ 1

. By Fermat’s Little Theorem, we know that both of these fraction terms
are integers, so n is composite. By squaring the statement of Fermat’s Little
Theorem, we obtain that

a2p ≡ a2 mod p

. Given that p does not divide a2 − 1, and that n − 1 = a2p−a2

a2−1
, p divides

n − 1. Given there are infinitely many primes that do not divide a fixed
a2 − 1, there are infinitely many pseudoprimes base a.

4.3 Carmichael numbers

We have seen above that for a base a, an−1 being divisible by n does not
guarantee primality. What, however, can we say about n if an−1 is divisible
by n for every choice of a. The answer, perhaps surprisingly, is nothing.

Definition 4.2. A Carmichael number is a value n for which Fermat’s Little
Theorem holds for any choice of a, yet n is composite.

At first glance, it seems highly unlikely that such a value will exist.
However, it turns out that the composite number 561 = 3× 11× 17 satisfies
a561 ≡ a mod 561. We now set up a theoretical criterion for a number
being Carmichael.

Theorem 4.5 (Korselt criterion). An integer n is a Carmichael number if
and only if n is positive, squarefree and if p | n, (p− 1) | (n− 1)

Before we give a proof, we will first introduce the notion of a primitive
root

Definition 4.3. A primitive root modulo n is an integer a such that for any
c coprime to n, there is some integer x such that c = ax mod n

Proof. We will begin by proving the forward direction. Let p be a prime
factor of n. From the fact that n is a Carmichael number, pn ≡ p mod n, so
pn−p ≡ 0 mod n. Writing n = xp for integer x, we have that xp | (pn−p),
and therefore x | (pn−1−1). However, as p ∤ (pn−1−1), p cannot be a factor
of x and therefore p2 ∤ n, so n is squarefree. Let a be a primitive root modulo
p. Therefore an ≡ a mod n, so an ≡ a mod p (as p | n). Thus an−1 ≡ 1
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mod p, however, given that a is a primitive root modulo p, a mod p has
order p− 1, so p− 1 divides n− 1.

For the converse, assume that for each p | n, (p−1) | (n−1), as well as n
being squarefree and composite. For these reasons, we note that it suffices
to show that an ≡ a mod p for every integer a and all p | n. Note that
an−1 ≡ 1 mod p as (p− 1) | (n− 1) and by Fermat’s Little Theorem. This
means that an ≡ a mod p, which holds for all values of a.

Therefore, we can easily conclude that 561 is a Carmichael number, given
2, 10 and 16 all divide 560.

5 Smooth Numbers

Suppose that for a possible prime number n, we could put an upper bound
to the values of its factors. This could then potentially make the process of
finding prime numbers a little quicker. If we know that there is no prime
factor exceeding a known prime number, it is logical to assume that this will
help speed up an algorithm for finding prime numbers. As it turns out, as we
will discuss in section 5.3, smooth numbers can help convert an algorithm’s
run time to almost polynomial. We will start by defining the notion of a
smooth number below.

5.1 Definition

Definition 5.1. A y-Smooth number is defined as a number x such that x
has no prime factors greater than y.

It is important to note that the definition of a smooth number is depen-
dent on having a useful and known prime valued number to use to compare
to, so for large values of x and y this may become difficult. We present some
examples below.

5.2 Examples

Example 5.1. The number 985 = 5× 197 can be described as 199 smooth,
given both 5 and 197 are less than 199. However, 985 is not 193 smooth, as
it has a factor greater than 193.

Example 5.2. The number 99777 = 3 × 79 × 421 is 443 smooth given all
of its prime numbers lie below 443. It is, however, not 389 smooth as that
value is less than 421.

5.3 Uses of smooth numbers in prime testing algorithms

The main reason for considering smooth numbers for prime number testing
is how they speed the process of finding these. We begin by assuming that
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for a prime number p, p − 1 is y-smooth for some odd number y, with
2 the only other prime factor. It then turns out that there will be more
than x

2
7 Carmichael numbers up to x, using a result on yc (see [5][p420]).

Another helpful improvement of considering smooth numbers is to reduce
primality proving algorithms to “’almost’ polynomial time” , as suggested
in the Pomerance article “The role of smooth numbers in number theoretic
algorithms” [5]. We move on to discuss two of these tests in our next section.

6 Tests to prove primality

We conclude this essay with some ways of showing that a possible prime
candidate is indeed prime.

6.1 Lucas Theorem

Thankfully for us, in order to show use Fermat’s Little Theorem to show a
number is prime, we only require one additional condition. Before this, we
need to introduce a new function.

Definition 6.1. Euler’s totient function φ(n) is defined as the order the
group of units in Z/nZ.

We will use this to prove the following result,

Theorem 6.1 (Lucas theorem). Let a and n be integers, with n > 1. If
we have that an−1 ≡ 1 mod n and that the order of a mod n is n − 1,
then we can conclude n is prime. Equivalently, for a prime q such that

q | (n− 1),a
n−1
q ≡ r mod n, where r < n and r ̸= 1

before we prove this result, we remind ourselves of Euler’s theorem, which
states that aφ(m) ≡ 1 mod m. From Euler’s theorem and Fermat’s Little
Theorem, we can immediately see that when p is prime, φ(p) = p − 1. We
now give the proof of the Lucas theorem

Proof. Assume that n is composite for a contradiction. We know that the
order of a has to divide φ(n) from Euler’s theorem, so n − 1 ≤ φ(n). If
n is composite, we have n − 1 < φ(n). Assume p is a prime factor of the
composite number n. We then know that p, n ≤ n and these are not coprime
to n, so the order of n will be less than or equal to n− 2. This contradicts
that n− 1 ≤ φ(n), so we conclude that n is prime.

This result gives us a powerful test as to whether a number is prime. We
now consider a test for Fermat numbers, and we begin by introducing them.

Definition 6.2. A Fermat number is a number of the form 22
k
+ 1, with

k ∈ Z. If this is prime, it is called a Fermat prime. We denote this as Fk.
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6.2 Pepin’s test

Before giving the Pepin test, we need to introduce some terminology.

Definition 6.3. Let a and m be coprime integers. We say that a is a
quadratic residue mod m if and only if the congruence

x2 ≡ a mod m

has a solution. It is said to be non-quadratic residue if not

Definition 6.4. Let p > 2 be a prime number and The Legendre symbol(
a
p

)
is defined as

(
a

p

)
=


0 if a = 0 mod p
1 if a is a qudratic residue mod p
−1 if a is not a quadratic residue mod p

We also bring the following result about the Legendre symbol

Proposition 6.2. for m,n coprime,(m
n

)( n

m

)
= (−1)

(m−1)(n−1)
4

We will use this terminology to help us prove the following result. Before
this we need to introduce Euler’s criterion.

Theorem 6.3 (Euler’s criterion). Where p is a prime number,
(
a
p

)
≡ a

p−1
2

mod p

With these results set up, we now introduce the Pepin test.

Theorem 6.4 (Pepin test). For k ≥ 1, Fk is prime if and only if

3
Fk−1

2 ≡ −1 mod Fk

Proof. We begin by assuming the the congruence. Using the Lucas theorem
with a = 3 and q = 2, we conclude that Fk is prime. Conversely, assume
Fk is prime. Given that 2k is even, it turns out that 22

k − 1 is divisible by
3 (this is easily checked by induction). Thus Fk ≡ 2 mod 3 and Fk ≡ 1

mod 4, so
(

3
Fk

)
=

(
Fk
3

)
= −1, as Fk−1

2 is even. Thus by Euler’s criterion,

the congruence holds

We now show an example of how prime candidates perform in these 2
tests.

Example 6.1. We have already seen that the Carmichael number 561 is
not a prime. To prove this without factorisation, consider 560 = 24 × 7× 5
and consider 2(

560
7

=80) ≡ 1 mod 561, so 561 cannot be prime.

Example 6.2. Consider F3. We will evaluate 3
F3−1

2 mod F3. It turns out
that 3128 ≡ −1 mod 257, so F3 is prime.

12



References

[1] Robert E Bishop. On fermat’s little theorem. preprint, 2008.

[2] Richard Crandall and Carl Pomerance. Prime Numbers a Computational
Perspective. Springer, 2nd edition, 2005.

[3] Paul Erdos. On almost primes. American Mathematical Monthly, pages
404–407, 1950.

[4] Melissa E O’Neill. The Genuine Sieve of Eratosthenes. Journal of Func-
tional Programming, 19(1):95–106, 2009.

[5] Carl Pomerance. The role of smooth numbers in number theoretic algo-
rithms. In Proceedings of the International Congress of Mathematicians,
pages 411–422. Springer, 1995.

[6] Don Zagier. Newman’s short proof of the prime number theorem. The
American mathematical monthly, 104(8):705–708, 1997.

13


